UAV PATH PLANNING WITH
OBSTACLE AVOIDANCE

Ahmed Magd Aly Shehata
INNOPOLIS UNIVERSITY CI Project

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

UAV Path Planning
Github repository:

The problem of the path planning has always grabbed the attention of researchers around
the world. In this report | will demonstrate how | approached this problem.In order to solve the
path planning problem, we need to have a starting point, desired point and some representation
of the environment that surrounds the UAV (unmanned aerial vehicle). In my project, | have
generated a random environment to simulate this process as well be explained in the following
sections

1. Generating Random Environment for Testing Purposes:
| have created an algorithm to generate a random environment, and it includes:

a. Bounding region
b. Start point
c. Goal point
d. Obstacles

1.a. Bounding region:

| am generating random rectangular region that UAV should not exceed. It is may be
easier to think of it as a bounding room. The following snipped of code shows how |
implemented this in MATLAB And | visualized the polytope that is considered as the bounding
box using BENSOLVE tools library.

///;; Generate random environment ‘\\\
°

%% 1. Random bounding box

rpx = rand*100; % center of bounding box in x
rpy = rand*100; % center of bounding box in y
rpz = rand*100; % center of bounding box in =z

% creating bounding box randomly
margin = 15; % margin put to ensure no obstacles on the start and goal points

xlimits = [rpx-50*rand-50 rpx+50*rand+50];
ylimits = [rpy-50*rand-50 rpy+50*rand+50];
zlimits = [rpz-50*rand-50 rpz+50*rand+50];

[bounding box x, bounding box_ y, bounding box z] = meshgrid(xlimits, ylimits,
zlimits);

o %

1.b. Generating starting and goal points:

| have assigned the starting and goal points near the corners of the bounding box. Each
one of them is close to corners opposite to each other to ensure that the path that the UAV
follows to go from start to finish passes by all obstacles inside. And this was ensured by the

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

https://github.com/Errors-Everywhere/Path_Planning_Optimization/tree/main

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

following two lines:

%% Start and Goal Points:

start = [xlimits(1l)+0.5*rand* (margin), ylimits(l)+0.5*rand* (margin),
zlimits (1) +0.5*rand* (margin)];
goal = [xlimits(2)-0.5*rand* (margin), ylimits(2)-0.5*rand* (margin), zlimits(2)-

0.5*rand* (margin)];

STEP 1

150

100

50

100 <//(/<//
80

50 40

Figure 1 First step in Generating random environment. The gray box is the bounding box, while the yellow and red points are the
starting and goal point respecitvely

1.c. Generating obstacles:

I have tried to randomize this process while knowing where are the places that could
contain obstacles (this will be helpful for me later on). I have divided the bounding box into a
number of grids. This number of grids is randomized as well. Each grid is rectangular box, and
the whole bounding box contains (nGrids)?3 of such boxes. The obstacles are allowed to be
generated inside these grids, and no obstacle can coexists in two grid boxes. And they cannot
exist on the very edge of each grid as well. These edges are saved to construct other polytopes
that will be discussed later on. The following code shows how these obstacles were generated:

//;% 2. Random obstacles ‘\\

xlimits obstacles region = [xlimits(l)+margin xlimits(2)-margin];
ylimits obstacles region = [ylimits(l)+margin ylimits(2)-margin];
zlimits obstacles region = [zlimits(l)+margin zlimits(2)-margin];

nGrids = 3;

xsteps = (xlimits obstacles region(2)-xlimits obstacles region(l))/nGrids;
ysteps = (ylimits obstacles region(2)-ylimits obstacles region(1l))/nGrids;
zsteps = (zlimits obstacles region(2)-zlimits obstacles region(l))/nGrids;

- /

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

nObstacles = randi (min (20, nGrids”3)); % limit the number of obstacles to 10
obstacles
GridIndices = randi([1l, nGrids], 3, nObstacles);

Obstacles As = {};
Obstacles bs = {};
Obstacles=[];

nPoints = randi ([20, 30]); % number of points to construct an obstacle

for i=1l:nObstacles
Obstacle ix = (xlimits obstacles region(1l)+0.5*xsteps +

xsteps* (GridIndices(1l,1i)-1)) + 0.495* (2*rand(l, nPoints)-1) *xsteps;
Obstacle iy = (ylimits obstacles region(1l)+0.5*ysteps +

ysteps* (GridIndices (2,1i)-1)) + 0.495* (2*rand(l, nPoints)-1) *ysteps;
Obstacle iz = (zlimits obstacles region(1l)+0.5*zsteps +

zsteps* (GridIndices (3,1)-1)) + 0.495* (2*rand(l, nPoints)-1)*zsteps;
Obstacles(:,:,end+l) = [Obstacle ix; Obstacle iy; Obstacle iz];

rep.V = Obstacles(:,:,end);
plot (polyh(rep, 'v'), red); hold on
end

And every obstacle is generated using random number of points (denoted by nPoints variable).
Each obstacle is then appended inside a cell variable so that it could be used later on.

STEP 2
L]

Ya

2
‘ o

100

100

80
50 40 60

20

Figure 2 Obstacles generated randomly inside the bounding box

2. Generating collision-free polytopes:

These obstacles cannot be added into the optimization problem directly. This is because if
they were added as a constraint, this will take the following form (Ax = b). And this
constraint is non-convex, which implies that it cannot be added and solved using the
optimization solvers.

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

Therefore, this problem could be solved by constructing other polytopes in the free of
collision regions and solving the problem as a MICP (Mixid Integer Convex Programming)
problem. In this project, | have used a library named IRIS (Iterative Regional Inflation by
Semidefinite programming), created by MIT. This library has functions that can help produce
polytopes that are free of obstacles and bounded by a bigger polytope (bounding region).
This algorithm mainly tries to fit the maximum ellipsoid that does not intersect the obstacles
and does not pass the out of the bounding box. Hence, it is required to give a point to that
algorithm were it could start iterating to find that maximum ellipsoid that fits that particular
region without passing through any obstacles. This point is called the “seed” point. And after
that a polytope is constructed using this particular ellipsoid. In my algorithm | have saved the
edges of the grid regions, discussed before, for those seeds. This ensures that the seeds are
not inside any obstacle.

| have generated two special seeds, one being on top of the starting point and the other is
on top of the goal point, because it is mandatory to have obstacle free regions in these
regions. The other seeds are planted at the edges of random grids. Also those seeds are
planted to be equivalent in number to the obstacles available in the environment. The
following snippet shows how | utilized IRIS in my code:

%% Generate collision-free polytopes:

[A bounds, b bounds] = vert2con(bounding box.V');
nSeeds = nObstacles; % limit the number of obstacles to 10 obstacles
GridIndices = randi ([0, nGrids-1], 3, nSeeds);
As = {};
bs = {};
seeds = [];
seeds vec = [0.5 0.5 0];
safe_regions = struct('A', {}, 'b', {}, 'C', {}, 'd"', {}, 'point', {});
for i=1:nSeeds
randomized = seeds vec (randperm(3));
seed ix =
(x1imits obstacles region(l)+randomized(l) *xsteps+xsteps* (GridIndices(1,1)));
seed iy =
(ylimits obstacles region(l)+randomized(2) *ysteps+ysteps* (GridIndices(2,1)));
seed iz =
(zlimits obstacles region(l)+randomized(3) *zsteps+zsteps* (GridIndices(3,1)));
seeds (end+1l,:) = [seed ix, seed iy, seed iz];
[A, b, C, d, ~] = iris.inflate region(Obstacles, A bounds, b bounds,
seeds (end, :) ") ;
safe regions(end+l) = struct('A', A, 'b', b, 'C', C, 'd', d, 'point',
seeds (end, 1)) ;
polytope.B = A; polytope.b = Db;
plot (polyh (polytope, 'h'), green); hold on
As{end+1}=A;

bs{end+1}=b;

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

Figure 3 The green areas represent the obstacle free polytopes

3. Path planning:
As discussed before, this problem could be solved using MICP. Therefore, | have used the
following optimization problem to find that path:

K-1
xinir} |21 — xgeqrell * wy + ”xK - xgoal” * Wy + Z ;41 — x;ll
Xk e}
(Aboundx < bbound
Ax<b+Mx*(1—cy) i=1..,N
N
subject to |
Qe =1
i=1
\ cik € {0,1}

Where ¢ and x are decision variables. C is a matrix of binary variables, the rows
represent how many obstacles are there. On the other hand the columns are for the number of
steps to be constructed between the starting point and the goal point. The big-M was used here to
enforce the points x to be at least inside one of the collision-free polytopes.

This problem was solved using CVX in MATLAB as show below:

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

%% Path planning (Solving the optimization problem) :

number of steps = 15;
weight goal = 1000;
weigth inbetween = 0.1;

bigM = 100;
nPolytopes = length (bs);

cvx_solver mosek
cvx_begin
variable x (3, number of steps)
binary variable c(nPolytopes, number of steps);

cost = 0

for i = 1:(number of steps-1)
cost = cost + pow pos(norm(x(:, i) - x(:, i+1), 1),
2) *weigth inbetween;
end
cost = cost + pow pos(norm(x(:, 1) - start'), 2)*weight goal;
cost = cost + pow pos(norm(x(:, number of steps) - goal'),
2) *weight goal;
start mat = diag(start);

goal mat = diag(goal);
minimize(cost)
subject to

for i = l:number of steps
A bounds*x(:, 1) <= b _bounds;
cs=0;

for j = l:nPolytopes
cell2mat (As(j))*x(:, 1) <= cell2mat(bs(j)) + (1-
c(j, 1)) *bigM;

The weights and the M values were tuned to get a good performance in my problem. The
first term in the cost function increases whenever the first point gets far away from the starting
point. Thus, by multiplying this by w;, this ensures that the first path point should be as close as
possible to the starting point. The same applies for the last point and goal point that are
represented in the second norm in the cost function. However, those two terms enough to solve
the problem. In order to find a short path that does not collide, we have added the last term. This
term ensures that the distance between one point and the next one is being minimized.

On the other hand, the path points should not intersect the obstacles. Which is the same as
saying, the path points, should pass only inside the obstacle-free regions, which are represented

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

by the green polytopes shown in fig. 3. That is why the second constraint is added. And the
following figure shows the path that was generated by this optimization problem:

Figure 4 The blue line shows spline fitted to the white points which were obtained by solving the MICP problem

In addition, a spline was fitted through the path points to ensure that the UAV could perform this
path. This because according the results published by Mellinger and Kumar, it is not necessary to
explicitly consider the dynamics of the drone as long as the path is smooth. Smooth paths could
be performed using the drones.

4. Additional Random Tests:
PLEASE IGNORE THE GREEN POINTS IN THE PLOTS, THEY ARE SOME NOISES IN THE
PLOTS

e One Obstacle:

Random Environment

START
® GOAL

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

Random Environment

START
® GOAL

100

e Three obstacles:

Random Envirenment

START
® GOAL

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

¢ Many obstacles:

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

Random Environment

START
® GOAL
100
N
-40
START
® GOAL
100
N 50
0
150

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE

Random Environment

START
® GOAL

150 ¢

100

50

UAV PATH PLANNING WITH OBSTACLE AVOIDANCE AHMED MAGD ALY SHEHATA

Table of Contents

.. 1
Options for PlOttiNG POIYIOPES.iieiii et et a e e e eeees 1
Generate random ENVIFONIMENLEiiiiii et e et e et e eeeat e e eat e e e eate e e e eatn e eeentnaaaes 1
1. RaNdOmM DBOUNAING DOX ...t e e e eaens 1
Start @0 GOAl POINES:ceeueieiiiii et e et e e et e e e e et e e e eete e e e eete e aene 2
2. RANAOM OBSLACIES ... ettt e e e e e e e e eaeen 2
Generate ColliSION-free POIYIOPES. 3
Path planning (Solving the optimization Problem):coieiiiiiii e 4
o Y= = o] = PP 4
cl ear al
cl ose al
clc

% run(' bt-1.3/ make _oct.m)

Options for plotting polytopes:

red.color = [1 0 0];

red. al pha = 1;

gray.color = [0.05 0.05 0.05];
gray. al pha = 0.01;

green. col or
green. al pha

[0 10];
0. 1;

yel | ow. col or
yel | ow. al pha

Generate random environment

[110];
0. 2;

1. Random bounding box

rpx = rand*100; % center of bounding box in x
rpy = rand*100; % center of bounding box in vy
rpz = rand*100; % center of bounding box in z

% creating boundi ng box randomy

margin = 15; % nmargin put to ensure no obstacles on the start and goal
poi nts

xlimts [rpx-50*rand- 50 rpx+50*rand+50];

ylimts [rpy-50*rand-50 rpy+50*rand+50];

zlimts [rpz-50*rand-50 rpz+50*rand+50] ;

[boundi ng_box_x, boundi ng_box_y, boundi ng_box_z] = meshgrid(xlimts,
ylimts, zlimts);

fake_margi n=0.1; % nargin used to plot the bounding box such that it
is not on top of sone pol ytope (asthetics reasons only)

xlimts_fake [xlimts(1l)-fake_margin xlimts(2)+fake_margin];

ylimts_fake [ylimts(1l)-fake_margin ylimts(2)+fake_margin];

zlimts_fake [zlimts(1l)-fake_margin zlimts(2)+fake_margin];

[boundi ng_box_x_fake, boundi ng_box_y_ fake, bounding_box_z fake] =
meshgrid(xlimts_fake, ylimts fake, zlimts_fake);

boundi ng_box. V = [reshape(boundi ng_box_x,1,[]);

reshape(boundi ng_box_y, 1,[]); reshape(boundi ng_box_z,1,[])];
boundi ng_box_fake.V = [reshape(boundi ng_box_x_fake,1,[]);
reshape(boundi ng_box_y fake, 1,[]); reshape(boundi ng_box_z_fake, 1,

(D1

Start and Goal Points:

start = [xlimts(1l)+0.5*rand*(nargin), ylimts(1)+0.5*rand*(nmargin),
zlimts(1)+0.5*rand*(nmargin)];

goal = [xlimts(2)-0.5*rand*(margin), ylimts(2)-0.5*rand*(nargin),
zlimts(2)-0.5*rand*(nmargin)];

scatter3(start(1l), start(2), start(3), 50, 'y', 'filled); hold on

scatter3(goal (1), goal (2), goal (3), 50, 'r', '"filled"); hold on

pl ot (pol yh(boundi ng box_fake,'v'), gray); hold on
Undefined function 'polyh' for input arguments of type 'struct'.

Error in Project (line 46)
pl ot (pol yh(boundi ng_box_fake,"'v'), gray); hold on

2. Random obstacles

xl'imts_obstacl es_region
ylimts_obstacl es_region
zlimts_obstacl es_region

[xlimts(1l)+margin xlimts(2)-margin];
[ylimts(1l)+margin ylimts(2)-margin];
[zlimts(1l)+margin zlimts(2)-margin];

n&Gids =randi ([1, 5]); % nunber of grids per axis

xsteps = (xlimts_obstacles_region(2)-xlimts_obstacles_region(1l))/
nGids;

ysteps = (ylimts_obstacles _region(2)-ylimts_obstacles_region(1l))/
nGids;

zsteps = (zlimts_obstacles_region(2)-zlinmts_obstacles_region(1))/
nGids;

nCbstacles = randi (m n(20, nGids"3)); %limt the nunmber of obstacles
to 10 obstacl es
Gidindices = randi ([1, nGids], 3, nCbstacles);
ost acl es_As {};
ost acl es_bs {};
ost acl es=[];
nPoints = randi ([20, 30]); % nunber of points to construct an obstacle
for i=1:nCbstacles

ostacle_ix = (xlimts_obstacl es_region(1)+0.5*xsteps +
xsteps*(Gidlindices(l,i)-1)) + 0.495*(2*rand(1, nPoints)-1)*xsteps;

ostacle_iy = (ylimts_obstacl es_region(1)+0.5*ysteps +
ysteps*(Gidlndices(2,i)-1)) + 0.495*(2*rand(1, nPoints)-1)*ysteps;
ostacle_iz = (zlimts_obstacl es_region(1)+0.5*zsteps +
zsteps*(Gidindices(3,i)-1)) + 0.495*(2*rand(1, nPoints)-1)*zsteps;
ostacl es(:,:,end+1l) = [Cbstacle_ix; Cbstacle_iy; Cbstacle_iz];
rep.V = Qbstacles(:,:,end);
pl ot (pol yh(rep, "v'), red); hold on
end

Generate collision-free polytopes:

[A_bounds, b_bounds] = vert2con(boundi ng_box. V');
nSeeds = nCbstacles; % limt the nunber of obstacles to 10 obstacles
Gidindices = randi ([0, nGids-1], 3, nSeeds);

As = {};
bs = {};
seeds = [];

seeds_vec = [0.5 0.5 0];
safe_regions = struct(' A, {}, 'b', {}, 'C, {}, "d, {}, '"point’
{1
for i=1:nSeeds
random zed = seeds_vec(randpermn(3));
seed_ix = (xlimts_obstacl es_region(1)+random zed(1)*xsteps
+xsteps*(Gidlndices(1,i)));
seed_iy = (ylinmts_obstacl es_region(1)+random zed(2)*ysteps
+ysteps*(Gidlndices(2,i)));
seed_iz = (zlimts_obstacl es_region(1)+random zed(3)*zsteps
+zsteps*(Gidlndices(3,i)));
seeds(end+1,:) = [seed_ix, seed_ iy, seed_iz];
[A, b, C d, ~] =iris.inflate_region(Cbstacles, A bounds,
b _bounds, seeds(end,:)');
safe_regi ons(end+1l) = struct('A, A 'b', b, 'C, C 'd,
d, 'point', seeds(end,:));
pol ytope.B = A; polytope.b = b;
pl ot (pol yh(pol ytope, "h'), green); hold on
As{end+1} =A;
bs{end+1} =b;
end

[A start, b_start, C, d, ~] =iris.inflate_regi on(Obstacles, A bounds,
b _bounds, start');

safe_regi ons(end+1l) = struct('A, A start, 'b', b_start, 'C, C 'd
d, 'point', start);

pol ytope.B = A start; polytope.b = b_start;

pl ot (pol yh(pol ytope, "h'), green); hold on

As{end+1}=A start;

bs{end+1}=b_start;

[A goal, b_goal, C d, ~] =iris.inflate_region(Obstacles, A bounds,
b_bounds, goal');

safe_regi ons(end+1) = struct('A, A goal, 'b', b_goal, 'C, C 'd
d, 'point', goal);

pol ytope. B = A goal; polytope.b = b_goal

pl ot (pol yh(pol yt ope,
As{end+1}=A goal
bs{end+1} =b_goal

“h),

green); hold on

Path planning (Solving the optimization prob-

lem):
nunber of steps = 15;
wei ght _goal = 1000;
wei gth_i nbetween = 0. 1;

bi gM = 100;
nPol yt opes = | engt h(bs);
cvx_sol ver nosek
cvx_begin
variabl e x(3,

nunber _of _st eps)
bi nary variabl e c(nPol yt opes,

nunber _of _steps);

cost = O;
for i = 1:(nunmber _of steps-1)
cost = cost + pow pos(norm(x(:, i) - x(:, i+1l), 1),

2) *wei gt h_i nbet ween;

end

cost = cost + pow pos(norn(x(:, 1) - start'), 2)*weight_goal

cost = cost + pow pos(norn(x(:, nunber_of steps) - goal'),
2) *wei ght _goal

start_mat = diag(start);

goal _mat = diag(goal);

m ni mze(cost)
subject to

for i = 1:nunber_of steps
A bounds*x(:, i) <= b_bounds;
cs=0;
for j = 1:nPol yt opes
cel I 2mat (As(j))*x(:, 1) <= cell2mat(bs(j)) + (1-c(j,
i))*bi gM
cs =cs +c(j, i);
end
cs == 1,
end
cvx_end
path = [start', x, goal'];
plot3(path(1, :), path(2, :),
path(3, :),'o" ,"Color',"b'," MarkerSize', 10,"' Mar ker FaceCol or' , ' #DOFFFF')

fnplt(cscvn(path),' b, 1)

Plot variables:

title(' Random Envi ronnent');

xl abel (" X');

yl abel (" Y');

zl abel (" Z2");

axi s equal

| egend(' START', ' GOAL')
grid off

Published with MATLAB® R2019b

